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A NOTE ON EXTENDED QUASI-LIKEI THOOD
M. Davidian
R.J. Carroll
Department of Statistics
University of North Carolina at Chapel Hill
321 Phillips Hall 039 A

Chapel Hill, North Carolina, USA
27514

SUMMARY

We study the method of Extended Quasi-Likelihood estimation of a
variance function. This method is shown to be closely related to the

method of pseudo-likelihood estimation as in Carroll & Ruppert (1982).

Keywords: EXPONENTIAL FAMILY; HETEROSCEDASTIC REGRESSION MODEL:; INFERENCE
FOR VARIANCE PARAMETERS; PSEUDO-LIKELIHOOD ESTIMATION; VARIANCE
FUNCTION ESTIMATION.
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N 1. INTRODUCTION
.\..

o
2”4 Consider the following mean-variance model for observable data y:
- E(y,) =, = 1 (B) = £(x,.B) : var(y,) = o°8°(u,.z,.0).  (1.1)
¢ i i~ " 1P i R S
‘ L ]
b Here, Y is the ith response variable of N independent observations,
1SN
’jﬂ (xi.zi) are associated vectors of covariates, f is the regression function,
AN B is a p-vector of regression parameters, o is a scale parameter, and g is
5 the variance function with variance parameter 6 (r x 1). For example, the
’-;
%} variance may be modeled as proportional to an unknown power of the mean:
{:

® 0
o g(k;.z;.8) =nu,, np >0 (1.2)
L
o
o Special cases of (1.1) are used in applications such as radioimmunoassay,

econometrics, and chemical kinetics. Model (1.1) includes the class of

;:f generalized linear models, see McCullagh & Nelder (1983).

A usual aim is the estimation of B, with estimation of the variance

C

vi“ function parameters as an adjunct. However, as discussed by Davidian &

éi Carroll (1987) and Carroll, Davidian & Smith {unpublished), estimation of
.?ﬁ the variance function, in particular the parameter 6, is an important |
'}; problem both for estimation of B and in its own right.

.

Sf Most methods for estimating 6 are '“regression” methods based on

é generalized least squares. In these techniques, 6 and ¢ are estimated by a

u{ weighted regression of some function of the absolute residuals from a fit

E; 5* on their expectations. For example, in location-scale problems squared
.z: residuals have approximate mean proportional to gz(ui.zi.e) and variance

proportional to g4(ui.zi.6). Thus an estimate of 8 can be obtained by a
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L 22~
S generalized least squares regression of squared residuals on o' g (ui.zi.e)
'.-\‘.- A ~ ~
505K with variance function gq(ui.zi.e). vwhere u, = f(x;.B,). A related method
X is the pseudo-likelihood approach of Carroll & Ruppert (1982). In this
:::‘:: method, one pretends B = B, and then estimates (o0,6) by normal theory

I\ A
-'.' maximum likelihood, maximizing ePL(ﬁ*.G,a). where
o

d
E\_ N
5‘. ePL(B.G,O) = -N log o - ifl log [g{ui(ﬁ).zi.e}]
e 2.-1 N 2,2
- - (20970 3 {y, - £(x,.B)Y /e {u (B).2,.0) . (1.3)
S i=1 4
[
.‘::“.- This process may be iterated with a generalized least squares routine for
M
;f-;.‘ B. The pseudo-likelihood method is asymptotically equivalent to weighted
"'_:'_:', regression on squared residuals, and full iteration of such a regression
‘:-’:: yields the pseudo-likelihood estimate. Both methods can be modified to
t
‘N account for loss of degrees of freedom for preliminary estimation of B as
ij:j' in Harville (1977); for a discussion and a review of many common methods
5- for estimation of 8, see Davidian & Carroll (1987).

N Pseudo-likelihood and weighted squared residual estimation are based
AN
L
::_.: upon the method of moments. Nelder & Pregibon (1987) instead attempt to
\.'_‘.
.::"_? define a family of distributions with mean and variance functions given by
-Eé (1.1), this class including as special cases skewed distributions such as
\.h_’-_
‘0 the Poisson or gamma. Their extended quasi-likelihood is
Lo
- s
-
S5 N 2 2 2
i) e . (B.6,0) = (-1/2) I [log {2wo“g (y..z,.0)} + D{y,.u.(B).z, }/0"].
N QL i=1 i'7 i i
=
-‘:—-::: where (1.4)
A "
—_—t Y
D(y.u.08) = -2 5 dw
:::::. v g (w.z.0)
e
-‘,,.-
:f\'
e
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The function @& is sometimes but not always an exact log-likelihood.

QL

Under (1.2), if 6 =0, & is the normal log-likelihood; for 68 = 1.5, that

QL

of the inverse Gaussian. For 6 = .5, ¢ =1, eQL differs from the Poisson
log-likelihood by replacing yi! by its Stirling approximation; for 8 =1,
eQL differs from the gamma log-likelihood by a factor depending on o. One
motivation for (1.4) is the Edgeworth expansion of Barndorff-Nielsen and
Cox (1979) or the related saddlepoint approximation of Daniels (1954),
which yield an expansion for the density of the mean of m random variables
from a one parameter exponential family as m - ®, The leading term of the
expansion at m = 1 is the extended quasi-likelihood summand. See Efron

(1986) for a related formulation. Note that the form of ¢ may be

QL
unsatisfactory in situations for which g(y.z.8) = O for y = 0. In this case
lielder & Pregibon suggest replacing g(y.z,0) by g(y+c,z,0) for some c; we
use this adjustment where applicable in our discussion.

An additional reason for considering approximate likelihoods for a
mean-variance model 1is that linear exponential families with given
mean-variance relationship do not always exist. For example, Bar-lLev &
Enis (1986) have shown that if the distribution of A is an exponential
family with variance function (1.2), it is necessary that 6 € (-«,0) U
(0.1/2), so that such a family exists only when 6 € {0} U [1/2,»), and the
general form for the density parameterized in terms of 8 and o is unwieldy.

We have observed in many examples that the pseudo-likelihood and
quasi-likelihood methods lead to similar estimates, although sometimes
inferences for 6 are substantially different. In Section 2, we construct
an asymptotic theory for extended quasi-likelihood which allows an easy

illustration of the relationship between the two methods and suggests a

simple motivation for the form of extended quasi-likelihood. We show that

-----------------
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'-'_:: under certain conditions the two estimators are asymptotically equivalent,
:~": although extended quasi-likelihood can be affected by an asymptotic bias
-,\ while pseudo-likelihood is not when the wunderlying distribution is
o
AgAN
N asymmetric. In Section 3 we discuss inference for 6 based on the two
“is

ra N
B 3 approaches. From the theory of Section 2 we observe that while inference
V)
AN based on asymptotic theory for the two approaches may yield similar results
155N
N
D :: under some conditions, such a test based on extended quasi-likelihood can
RN

N
0 be adversely affected by possible asymptotic bias of the estimator, a
e problem not shared by pseudo-likelihood tests.

~

X

=

@

- 2. SOME ASYMPTOTIC RESULTS

Neither pseudo-likelihood nor extended quasi-likelihood are exact

'~;:'; likelihood approaches. Pseudo-likelihood is based on the wmethod of
moments, so that the estimating equations are unbiased and hence
::'j: consistency and asymptotic normality obtain under very general conditions
A even without the assumption of normality. Let v(ui,zi.e) = log g(ui.zi.e).

1@

»
L4
r

ve(ui,zi.e) be its column vector of partial derivatives with respect to 0,

O .
A

e -1 .
:_:-_: we(ui.zi.e) = ve(ui.zi.e) - N3 ve(uj.zj.e). and §(u,0) be the limiting

:'::: covariance matrix of the vg- Let subscripts denote differentiation with
’:'_’: respect to the argument, e.g., g“(ui.zi.e) = ag(ui.zi,e)/aui. Define the ‘
:::::: errors e, = (yi-ui)/{a g(ul'zi'e))' and assume the (61} are independent .
'-.:s
et with skewness (i and kurtosis Ky kg = 0O for normality. Let v = (n.Gt)t

- and use subscripts PL and QL to denote pseudo-likelihood and extended

g

;:r',:: quasi-likelihood, respectively.
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S5\ RESULT 1 (Davidian and Carroll, 1987). Suppose that (B,-B)/o = O (N %)
B h').‘
’.‘r ~ - ~
b, and Tp T Y7 = Op(N 1/2). Then BPL is asymptotically normally distributed
with mean 8. If o -2 O simultaneously with N = @, then
o
2 N6, - 0) = (28(n.8))" ] K172 3 (€2 - 1o (u,.2,.6) + o_(1)
»Y . PL = . ot g\Hi %y ptt/-
G
o (2.1)
a’r\.
! f:‘.l
t ::\.'
If the {ei} are identically distributed with kurtosis k., the covariance
_::::::j matrix of the asymptotic distribution of ePL is given by
'.':::'
b i
: (2 + k) {4N E(n.0))7". (2.2)
.r,“-l'
Y
2
e The assumption ¢ = 0 is a useful simplification technically and is
Lot
‘ relevant in applications where o is "small” relative to the means as in
SNe]
-;::‘, radioimmunoassay, see Carroll, Davidian & Smith (unpublished}. In the
e gamma and lognormal distributions, o is the coefficient of variation, which

U" ;
LAY

is often fairly small. Alternatively, think of y; as the mean of m

~':: observations with mean By and variance g2(ui.zi.6). equate o and m_1/2. and
ACS
: <1 let m - =,
<3
N The assumption ¢ 2 O yields a motivation for (1.4). Since the goal of
_l:'{: extended quasi-likelihood is to describe a class of distributions '"nearly”
T
[+ containing exponential families, consider a density h such that
PR
~—
o 2
P log h(y.a.8,0) = {ya - b(a)}/oc” + c(y.0 o) (2.3)
N
‘\n"\-
P
) for some b, ¢, and a = a(u,0). To satisfy (1.1) we require db(a)/8a = u
oy
-,
.z:
Y
Lo
n
Ld.
.-'_'(
a'.:l .'J‘,.-“"l‘.'_l;‘f S ".'_:-4'_;-‘_;.',:-'_::" Al P '-f‘.:-" 'J‘,‘?_"J'."-'_:-‘_:-'_;J"' -'_:J',"-‘_'-‘_;-‘_".‘_ ""_.'__.‘_ A.‘,..'\.'_.J _‘-'_..‘ s ~_" “n"_ .."_'-f P“.‘_‘. '..."'.' _'.‘_‘-
ot ".‘-‘.j._-f'..-':«‘g’ At et a".-,"."‘);\p" NN WA I N T R Sy ,1
L AR O A 3 R A T T N N N A N PN A DR MR N R A
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and %b(a)/8a® = g2(1.z.0). implying that p = (db(a)/du} duwda and

gz(u.z.e) = 6uwda. This yields, writing b now as a function of u,

o= (/g20u02.0)) du: b)) =/ {we(u.2.8)} du.

-0 —0

Plugging into (2.3) gives after simplification
2,.-1
log h(y.a.0) = - (207) ~ D(y.z.8) + d(y.6.0) (2.4)

for some function d. For h to be a density we must choose d so that h
integrates to one; by approximating the first term on the right side of

(2.4) when o is small we may approximate d. Since when o is small we have

o2 Dya.z) = (y-w)*(0%3(y.2.8)). d = -(1/2) log{2mog>(y.z.8).

Inserting this in (2.4) yields the summand of (1.4).

The fact that (1.4) is an approximate log-likelihood implies that 8QL
need not be consistent. With the suggested adjustment ¢ = 1/6 as in Nelder
& Pregibon (1987), if the (yt} are dist. 'ted as Poisson with means {“i)

taking on values 1 and 4 in equal proportions. the theory of M-estimation

as in Huber (1981 p. 130-132) implies that 6 converges to 0.675; if the

Q.

(ui) take values 1 and 5, 6 converges to 0.640. If the (ui) take on

QL
larger values, such as 30, 40 and 50 in equal proportions, however, GQL

converges to 0.500.

Since the estimating equation for the extended quasi-likelihood

A

estimate 6 can be biased, standard asymptotic theory for OQL' while

QL
possible to construct, is not fully informative. As an approximation we
use the small o assumption to construct an asymptotic theory. We also

describe an approach suggested by the Poisson case for "large” {“i)'

S
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v RESULT 2. Suppose that N1/2(~: - %) = 0,(1) and N1/2 (B~ P)/o = O (1)
R if N2 5A20as Now®, o-0. Then

L N

AT 1/2,4 -1 ,-1/2 2

2 NGy - 0) = (2 £ 0T NTE 3 (6] - 1) wguy.2,.0)

172 -1 )

») . + (V%) {6 E(1.8))7" Gy + o (1), where (2.5)
-j:: ) N

e &G =N i§1 Cile(ny.z,.0) ”eu(“ 2,,8) -2 &, (1;.2,.8) wglu;.z,.0)}.

)

- A sketch of the proof is contained in the Appendix. The implication of
NN (2.5) is that while 6y and 8y behave similarly. they differ in an
::::: asymptotic fashion through the second term on the right hand side of (2.5)
. 1

in a way that might affect asymptotic inference. For example, if the {ei}
135 are identically distributed with skewness { and kurtosis k, then BQL is
-.::‘:: asymptotically normal with covariance (2.2) and mean

o 6 + (6N'/2g(11.0)) 1 {NC}. where Cy - C.

Of

From (2.5), 6, and 8, will be asymptotically equivalent only if A = O or

e QL PL

::::::' CN = 0; the latter will occur for symmetrically distributed data.

;__; In the case of (1.2), ve(ui,zi.e) = log M, so that

v N 6-1 - - N

= N3 Cm {1 -206 (lognu, -1.)}, 1y=2 logu,.

G i My i~ °N N J

"o i=1 j=1

NG

%] For the normal distribution, fi = K, = 0; for the gamma, lognormal, and
:f:: inverse Gaussian distributions L’i = 0O(o) and Ky = 0(02). so that the
=

\_, asymptotic bias is O and the two estimators are asymptotically equivalent
-I'.r-

s with covariance the same as if the data were normally distributed with mein
X7

AN

Ay

R

®
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My and variance a2p?9. From Bar-Lev & Enis (1986), (i = 0(o) for

distributions which are exponential families with 6 € {0} U [1/2,»). If
the {yi} are not from an exponential family, the asymptotic bias need not
be zero. For example, consider a shifted gamma model Y; = My +
ag(ui.zi,e)ei. where w, has a gamma (ai.wi) distribution with E(wi) =

-1/2

2 2 .
ailwi. and e, = {wi - (ai/¢i)) (ai/¢i) , so that E(ei) = 1. In this

-1/2

case (i = 2 a,

. so that if the {ai) do not depend on o, the asymptotic
bias will not vanish.

An asymptotic theory for which the means are "large"” in which o
remains fixed yields a similar result under (1.2) if 8 < 1. Let Ho N be a
sequence to be chosen shortly. Define u: = “1/”0.N and y: = yi/uO.N so
that e, = {y: - u:)/(b “:8)' where 6 = o uéégl).
and Ho N © in such a way that the {u:) and the (y?) are well-behaved,

If as N & o, mini By - ©

then if 8 < 1, 8§ 20 as N =» @ so that the calculations here parallel those
for the case of small o. By analogy. the small o part of Result 1 holds.

Replacing o by & in (2.5), in the Poisson case for which 6 = .5 and ¢ = 1,

-1/2

-1 . - 3
i and Ky = H; . SO that CN - 0 and the limiting covariance of BQL

(y=H

is as if Ky = 0. Thus, in the case of "large"” means and data distributed

as Poisson. extended quasi-likelihood and pseudo-likelihood will behave

similarly.

3. INFERENCE FOR 6
The asymptotic distribution theory of Section 2 can be used to

construct tests of HO: 8 = 90. For simplicity consider identically

~

* A
distributed (61) with kurtosis x. From (1.3), ePL maximizes BPL(B*.B).

where




r = ‘vvvvw'v'vvvvvrvv1'v*vtv'v'vwvwv'v'u'v'v'vikuvv-v-uvvvv-iw

A N
25 (P.0) = N log op (B.0) = 3 log £(u(8).z,.0).
~ N
opL(8:0) = 3 {lyy = £0x; B /gy (B) 2,0}
1=

One might reasonably base inference for 6 on a test statistic

* ~ * o0 P

where B(G) denotes a generalized least squares estimate computed at 6.
Result 1 may be used to show that under H., {2/(2+k)} TN is asymptotically
distributed as xg. so that a test based on this statistic with «
appropriately estimated is an asymptotic a-level test. McCullagh &
Pregibon (1987) consider estimators for the cumulants for linear regression
models.

Nelder & Pregibon (1987) suggest a likelihood ratio type test based on
treating the extended quasi-likelihood as an actual likelihood. Such a

test is based on

» »x o~ ~
QN = -2 [eQL{ﬁ(eO)'eO} - eQL{B(GQL)'eQL}J'

where
. . N
eQL(Bae) = -N log UQL(B-B) - iil log g(yi'zi'e)'
2 -1 N
UQL(B'B) = N ifl D{yi'ui(B)'Zi}'

In the situation of Result 2, under HO {2/(2+k)} QN is asymptotically
distributed as noncentral xf with noncentrality parameter A =

A2§2th(u.9)_lc {9(2+n)}_1. As long as A = 0, comparing this statistic to
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the percentiles of the xf distribution is an asymptotic a-level test which
is asymptotically equivalent to the test based on TN. Nelder & Pregibon
suggest comparing QN directly to the percentiles of the xf distribution,
not accounting for the factor 2/(2+x). In the saddlepoint approximation
approach, m = © implies « - 0, thus they observe that if the underlying
distribution of the data is known to be from an exponential family, then
such a test is asymptotically valid. In our asymptotics, for the cases of
the normal, Poisson, gamma, and inverse Gaussian examples cited in Section
2 we see this to be the case. We further obtain the correct form and
properties for a test of this type when only the mean-variance relationship
is specified.

For a model such as (1.1) for which only the mean and variance are
specified, interest in 6 may be in the context of trying to understand the
structure of the variances, not the form of the underlying distribution. A
test based on QN will approach its nominal level only if A = O. Thus, when
the underlying distribution of the data is such that aQL is bilased
asymptotically so that A # O, in the case of a nonsymmetric error
distribution for example, the validity of a x2 test based on QN may be
seriously affected in that there will be bias in the asymptotic levels of

the test.
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APPENDIX : SKETCH OF PROOF OF RESULT 2

A A A

For convenience, let 11 = log o and let (f.6.,n) be the joint extended

quasi-likelihood estimators for (f3.6.n). Let 7(i,B.68) = {1 , vé(ui.zi.e)}?
; -1 . . t

p(1.8.0) = f4(x;.B)/gu (B).2;.0). By = -aN '3 7(i.p.6) T(i.8.8)". Jy =

9N'3 e, p(i.B.0) 7(i.5.0)% and Gy = N''Z p(1.5.8 p(1.8.0)". From (1.4).

N
(B.8,7m) solves

Q, y(B.8.m)
0= Q2 N(B'a';) ,  where (A.1)
Qy n(B.6.7)
12 N o .
Q n(B.8.m) =N 151 e “1 (Y, - n) p(i.B.8)/g(n,.2,.6);
/2

— N -_—
Q n(80.m) = N2 3 (e Dy gz - 1):

i=1

/72

N
2 [~ % e N 8D(Y,.n;.2,)/80 - {3log g(Y;.z;.6)/36}].
i=

-1
Q3'N(B.6,n) =N .

The following result is shown by assuming appropriate smoothness conditions

for g so that D may be differentiated.
LEMMA A. Under regularity conditions,

N
NS DY, z) =0® N3 240

1 i=1 i

1




IR TR

7 ) A
AR RN
PR BN )
R BTN

P SO AL
WA

i

1 N 2 1N 2
N 3 ap(Y,.un,.z,)/80 = -2 { 6°" N~ 2 e v,(i.B.6)
iTTiTTi i 0
i=1 i=1
+ 03 N-1 g s e3 } +0 (04)'
. 2,1 74 P !
i=1
-1 N t 2 1 N 2 t
N 32D(Y. n..2.)73088% =2 6> N1 5 €2 [3 v,(i.B.0) vi(i.B.0)

i=1 it j=1 1 0 6

~{8go(H; 2;.8) / 8(1;.2,.8)} 1+ 0 (),

2 t
where gee(ui.zi,ﬂ) = 8 {g(ui.zi,e)}/aeae v 814 = -2 gu(ui.zi,e)/3, and

So 1 = geu(ui.zi.e)/B - ve(ui.zi.e) gu(“i'zi'e)'

A Taylor series in (A.1) using consistency, a Taylor series in o about

O using Lemma A and laws of large numbers yield after simplification

Ciy In N172 (B - B)/o
| . n-1
N 5 By 5o
(A.2)
N -
N2 3 e p(1.5.0) 0
) i=1 . (V2 v o.(1).
2 o aN 3 ’
N b (ei - 1) 1(i.B,9) N3 €7 s,
. . 1 1
L i=1 L i=1

where s; = (s1 { S; i). Equation (A.2) implies that, as N »®, 0 =0,
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12| n - 12 ¥ o
By N "= |=-2N 3 (e - 1) 7(i.B.0)
8 -6 i=1
172 . -1 N 3
+2 (N""0o) N 3 €7 s, + o0 (1).
i=1 1 1 P

Algebra and simple probability limit calculations yield the result.
Equation (A.2) also shows that in these asymptotics BQL is equivalent to a

generalized least squares estimator for B. 0O
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